文章编号:0253-2239(2008)09-1793-05

一维光子晶体微腔在硅基材料发光中的应用研究

陈丽白 郭震宁 林介本

(华侨大学信息科学与工程学院,福建泉州 362021)

摘要 硅基材料的高效发光对未来硅基光电子集成的发展极其关键,含微腔的一维光子晶体可以显著提高其发光 强度、窄化其发光峰。介绍了几种硅基材料发光的一维光子晶体微腔结构,包括单缺陷模式的对称与非对称结构、 多缺陷模结构及电注入结构。利用传输矩阵法计算其缺陷模透射谱,以间接分析其发光谱。 关键词 光子晶体;一维光子晶体;硅基发光;微腔;缺陷模 中图分类号 O734 **文献标识码** A **doi**: 10.3788/AOS20082809.1793

Study on Application of One-Dimensional Photonic Crystal Microcavity to Luminescence of Silicon-Based Material

Chen Libai Guo Zhenning Lin Jieben

(College of Information Science and Technology, Huaqiao University, Quanzhou, Fujian, 362021, China)

Abstract High-efficiency luminescence of Si-based material is essential for the development of photoelectronic integration . One dimensional photonic crystal (1D PC) with microcavity (MC) could enhance its intensity and narrow its spectrum greatly. Several Si-based luminescent 1D PC MC structures are introduced, including single-mode symmetrical and asymmetrical structures, multi-mode structure and electrically injected structure. Then their transmission spectra of defect modes are calculated by the transfer matrix method, which can reflect their luminescent spectra indirectly.

Key words photonic crystal; one-dimensional photonic crystal; luminescence of silicon-based material; microcavity; defect mode

1 引 言

众所周知,以硅为基质的微电子工业已成为国 民经济发展的重要支柱。随着现代社会对光通信的 需求越来越大,硅基光电子集成也愈发显得重要。 然而,由于硅属间接带隙材料,发光效率很低,对于 如何实现硅基高效发光人们已做出许多积极的探 索^[1~3]。在此基础上,结合光子晶体微腔可以更加 有效地改善硅基材料的发光性能。根据珀塞尔效 应^[4],光子晶体微腔能够增强原子的某些自发发射, 同时抑制其它模式,从而大大提高微腔的Q值。由 于其优良的特性,已在发光二极管、激光器等领域引

微腔的Q值。由 微腔结构的谐振模,因此由缺陷模透射谱可以准确、激光器等领域引 地反映发射光谱的峰值位置及线宽。文中只对所介

起广泛的关注和研究[5~7]。其中,一维光子晶体

(1DPC)的制备较简单,在各器件中的应用十分普

遍。Ali Serpenguzel 等^[8]在实验上验证了一维光子

晶体微腔对于发光薄膜光致荧光的调制作用,观察

到半极大全宽(FWHM)明显窄化,峰值强度显著提

结构,包括单缺陷模的对称与非对称结构、多缺陷模

结构及电注入结构。需要指出的是,缺陷模即反映

介绍了几种硅基材料发光的一维光子晶体微腔

高,且测得的透射谱与光荧光谱匹配良好。

作者简介:陈丽白(1984-),女,硕士研究生,主要从事光子晶体方面的研究 E-mail:chenlibai@163.com

收稿日期: 2008-01-08; 收到修改稿日期: 2008-03-13

基金项目: 国务院侨办科研基金(06QZR02)资助项目。

导师简介:郭震宁(1958-),男,教授,硕士生导师,主要从事光电材料方面的研究。

绍结构的发光光谱的峰值位置及线宽进行分析,而 不讨论其峰值强度的增强幅度。

2 光学微腔工作原理

目前应用较广泛的腔结构有平面镜腔、球面镜 腔及环形腔。其中,最简单的是平面法布里-珀罗 (Fabry-Perot)微腔结构,它由两个反射镜及其间所 夹的工作物质组成。特定波长的光在其镜面法线方 向上受到限制,当腔长为*mλ/2n(m*为整数,*n*为折射 率)时,光在腔内产生驻波振荡,从反射率较低的反 射镜方向出射。因此,最小的微腔就是腔长为*λ/2n* 的腔。尺寸可达如此之小的微腔激光器及其阵列是 未来信息科学发展的重要部分^[9],它不仅能使集成 度产生飞跃,更大大降低功耗,同时还能提高调制速 率。按照其结构的不同,微腔激光器可分为,垂直腔 表面发射型、圆盘型和微球型,广泛适用于低功率的 光互连、巨平行的数字光计算、多头存储器、多信道 光纤通信及信息显示等领域。

光子晶体是一种特殊的光学微腔。如果光子晶体中出现缺陷,就会导致光子禁带中出现频率极窄的缺陷态,与其缺陷态频率相吻合的光将被局域在这一位置附近,相当于一个微腔。若在这样的光子晶体中引入发光物质,就能够增强缺陷态频率范围内的光发射强度,同时抑制其他模式,因此发光谱接近单一模式,微腔的Q值大大提高。

3 硅基一维光子晶体对称结构

近年来,纳米材料的量子限制效应为硅基发光 打开一条通道。2004 年 Kim^[10] 等采用等离子增强 化学气相淀积制备了埋在 Si₃N₄ 基质中的 Si 纳米 晶粒,随着 nc-Si 尺寸的不同,观察到中心波长从 410~900 nm 的光致荧光谱,如图 1 所示。实验虽 然获得了覆盖整个可见光区域的光谱,且延伸至红 外波段,但每个发光峰的半极大全宽度都达到了 200 nm 左右,单色性很差,因此在实际应用中可能 受到限制。利用一维光子晶体微腔就可以很好地解 决这一问题,在获得线宽极窄的荧光谱的同时,还可 以提高其峰值强度,其结构如图2所示。两侧的高 反射率由一维光子晶体构成的分布式布拉格反射器 (DBR)提供,一般情况下,它们的光学厚度都选为 λ/4,组成光子晶体的两种介质必须对缺陷层发出 的光是透明的。另外,发光层的厚度将影响到缺陷 模的位置及个数,而介质层两种材料的折射率差和 总周期数 N 也将决定带隙及缺陷模的品质,因此应该根据实际需要做适当的选择。

图 1 nc-Si/Si₃ N₄ 样品材料的光致发光谱 Fig. 1 Photoluminescence spectra of nc-Si/Si₃ N₄ samples

图 2 一维光子晶体对称结构 Fig. 2 One-dimensional photonic crystal symmetrical structure

选择 nc-Si 尺寸为 2.6 nm 的 nc-Si/Si₃N₄(用 D 表示)材料作为一维光子晶体对称结构的微腔发光 层,它的发光中心波长 λ 为 410 nm。根据此条件, 选择折射率分别为 2 和 1.46 的 Si₃N₄(用 H 表示) 和 SiO₂(用 L 表示)作为一维光子晶体介质层。使 这三种材料在 Si 衬底(厚度 0.5 mm)上交替分布, 顺序由下往上依次为:(HL)^{N/2}D(HL)^{N/2},每一层 薄膜的光学厚度都为λ/4。利用文献[11~12]中的 传输矩阵法计算其透射谱,得到图 3 所示的缺陷模 的位置、线宽与总周期数 N 的关系。可以看出,缺陷 模线宽随着 N 的增大而变窄,也就是说,发光峰的 半极大全宽度被显著压缩,可以从 200 nm 左右压 缩至 2 nm。采用等离子增强化学气相淀积能够较 容易地制备出这种结构,从而克服 nc-Si/Si₃N₄ 材料 发光谱线过宽的缺点。理论上当 N 足够大时,可以 获得单一模式的发光谱,但实际上,考虑到材料对光 的吸收及制备过程中产生的误差,谱线将有所展宽。 发光层还可以选择其他的发光材料,只要根据发光 波长调整各薄膜的厚度,就可以获得相应的高质量 的发光谱。

图 3 缺陷模线宽与周期数 N 的关系 Fig. 3 Full width at half maximum of defect modes versus N

4 硅基一维光子晶体非对称结构

要改变缺陷模的位置,除了改变上述对称结构 中所有薄膜层的厚度之外,另一种办法就是采用一 维光子晶体非对称结构,即只需改变发光层一侧光 子晶体各层的厚度就可调整缺陷模的位置。设图 2 中,发光层上方的光子晶体介质层各层的光学厚度 t仍为 $\lambda/4$,而下方各层光学厚度为 $\delta \cdot t$ 。仍然选择与 上述同样的结构: $(HL)^{N/2} D(HL)^{N/2}$, 在 N = 10 的 情况下,改变δ值,分别计算其缺陷模的透射谱。如 图4所示。随着δ的增大,缺陷模逐渐向长波方向 移动,也就是发光峰发生了红移。但同时可看到,图 4(a)中的各缺陷模的形状几乎相同,而图 4(b)中, 当δ较大时,缺陷模有所展宽,且禁带特性越差(δ =1.3 时尤为明显),这将导致其他模式无法被非常 有效地抑制。因此,这种不对称结构较适用于对发 光峰位置的微调或对发光谱的质量要求不是很高的 情况。

图 4 不同 δ 值时的缺陷模透射谱 Fig. 4 Transmission spectra of defect modes at different δ

5 硅基一维光子晶体多缺陷模结构

两种结构都只存在一个缺陷模,为了获得多模输出,Takahiro Shiga 等提出了多波长共振腔结构^[13],其结构如图 5 所示。MM、DM₁和 MM、DM₂分别组成两个共振腔,EML 为有机发光层,其发射光谱包含两个共振波长 λ_1 和 λ_2 ,FL 是为了调整腔长 L₂ 而引入的,调整该结构的物理参数,就可获得 λ_1 和 λ_2 的混合色。但是,其中的 DM₁ 必须对 λ_2 透明而对 λ_1 全反射,因此在材料选择与制备上较麻烦。我们提出一种更简单的结构,只需对图 2 的结构稍加改变就能够产生两个共振模,如果同时发射 蓝光和黄光就可实现白光输出。

图 6 给出了一维光子晶体多缺陷模的结构,与 图 2 结构不同的是引入了两种发光材料,D₁,D₂ 分

别代表 nc-Si 尺寸为 2.8 nm 和 3.6 nm 的 nc-Si/Si₃N₄ 发光层,它们的发光中心波长分别位于 585

图 6 一维光子晶体多缺陷模结构 Fig. 6 One-dimensional photonic crystal multimode

structure

nm (黄光)和 470 nm (蓝光)^[10],同样选择 Si₃N₄ (H)和 SiO₂(L)作为一维光子晶体介质层,每一层 薄膜的光学厚度为 $\lambda_0/4(\lambda_0 = 520 \text{ nm})$ 。N 取 10 时, 该结构的缺陷模透射谱如图 7 所示。可以发现,在 λ_0 两边分别出现了两个缺陷模,中心波长恰好位于 585 nm 和 470 nm 附近处。这就意味着,在光激励 下,发光层的两个发射模式都能够在该腔中谐振,从 而混合输出白光。如改变发光物质且调整 λ_0 ,还可 获得其他的双色混合输出。

6 硅基一维光子晶体电注入结构

在实际应用中,电致发光器件往往比光致发光 器件更具有实用性。在硅基一维光子晶体微腔结构 中,要实现电致发光必须引入电极,结构如图 8 所 示。透明导电层薄膜(n=2)作为导电层对可见光 透过率非常高,而金属层(如 Ag 等)则同时作为反 射器与电极引入,但是需注意在计算过程中,它的折 射率必须取复数,传输矩阵法仍然适用。当波长约 400 nm 时,Ag 的复折射率为 0.075-1.92i^[14],反射

图 8 一维光子晶体电注入结构

Fig. 8 Electrically injected 1D PC structure 率高达 95%以上。制备时只需按照设计要求严格 控制各层的厚度,即可对发光谱实现较好的调制作 用,电致发光谱将明显窄化与增强,而且这种结构制 备相对简单,可用于发光二极管等发光器件中。

7 结论

介绍了几种硅基发光的一维光子晶体微腔结构,以改善硅基材料的发光性能。由缺陷模透射谱 看出,发光峰明显窄化。改变一维光子晶体的膜厚 可以调整发光谱的位置,且周期数 N 越大,其单色 性越好。另外,还能够实现多模结构的白光输出及 电致发光,在发光二极管等发光器件中可得到广泛 应用。

参考文献

- 1 Jong Hoon Kim, Kyung Ah Jeon, Sang Yeol Lee. Formation mechanism and optical properties of nanocrystalline silicon in silicon oxide[J]. J. Appl. Phys., 2005, 98, 014303:1~4
- 2 Lucio Martinelli, E. Grilli, M Guzzi. Room-temperature electroluminescence of ion-beam-synthesized β-FeSi₂ precipitates in silicon[J]. Appl. Phys. Lett., 2003, 83(4):794~796
- 3 Wang Qiming. Breakthrough of the indirect band-gap limitation for the realization of Si-based laser devices[J]. *Physics*, 2004.33 (5):311~315

王启明. 突破间接带局限创新 Si 基激光器[J]. 物理,2004,33 (5):311~315

- 4 E. M. Purcell. Spontaneous emission probabilities at radio frequencies[J]. Phys. Rev., 1946, 69(11):681~681
- 5 Rattier M, Krauss T, Carlin J F, et al.. High extraction efficiency, laterally injected, light emitting diodes combining microcavities and photonic crystal [J]. Optical and Quantum, 2002, 34(1):79~89
- 6 Song D S, Lee Y J, Choi H W, et al.. Polarization-controlled single transverse mode photonic-crystal vertical-cavity surfaceemitting lasers[J]. Appl. Phys. Lett., 2003, 82(19):3182~ 3184
- 7 Happ T D, Kamp M, Forchel A. Two-dimensional photonic crystal coupled-defect laser diode[J]. Appl. Phys. Lett., 2003, 82(1):4~6
- 8 Ali Serpenguzel. Photonic crystal based amorphous silicon microcavity[C]. SPIE, 2003, 4986:633~644
- 9 Yu Rongjin, Wang Yutang. Development of microcavity lasers

and their arrays [J]. Science and Technology Review , 1995, (11):16~18

于荣金,王玉堂.微腔激光器及其列阵的发展[J]. 科技导报, 1995, (11):16~18

- 10 Tae-Youb Kim, Nae-Man Park, Kyung-Hyun Kim, et al.. Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films[J]. Appl. Phys. Letts., 2004, 85(22): 5355~5357
- 11 Zheng Shuwen, Fan Guanghan, Li Shuti et al.. Research on reflection spectrum of Al_{0.5} Ga_{0.5} As-AlAs distributed bragg reflector at different incidence angles [J]. Acta Optica Sinica, 2006,26(5):752~756

郑树文,范广涵,李述体等. 人射角对 Alo.5 Gao.5 As-AlAs 分布 布拉格反射器发射光谱的影响[J]. 光学学报,2006,26(5):752

 ~ 756

- 12 Jiang Meiping, Chen Guang, Chen Xianfeng et al. Defect mode of Bragg microcavity containing negative refractive index materials[J]. Chin. J. lasers, 2006, 33(8):1056~1061 蒋美萍,陈光,陈宪锋等. 含负折射率介质布拉格微腔的缺陷 模[J]. 中国激光,2006, 33(8):1056~1061
- 13 Takahiro F , Hisayoshi F, Yosunori Taga. Design of multiwavelength resonant cavities for white organic light-emitting diodes[J]. J. Appl. Phys., 2003, 93(1):19~22
- 14 Tang Jinfa, Zheng Quan. Applied Film Optics. Shanghai: Shanghai Science and Technology Press, 1984, 165~350 唐晋发,郑权.应用薄膜光学[M]. 上海:上海科学技术出版社, 1984, 165~350

光学前沿——首届"大珩杯"光学期刊优秀论文评选活动的通知

为了进一步提高我国光学期刊的学术水平和论文质量,吸引和催生优秀稿件,鼓励和培育优秀作者,促进我国光学、激光 科技事业发展,《光学学报》、《中国激光》、*Chinese Optics Letters* 特发起"光学期刊优秀论文评选活动",在光学泰斗王大珩先 生的支持下,本活动特命名为光学前沿——首届"大珩杯"光学期刊优秀论文评选活动。自 2008 年起,期刊编辑部将每年举办 优秀论文评选活动。

主办单位:中国科学院上海光学精密机械研究所

联合主办单位:相干(北京)商业有限公司

协办单位: 江西连胜实验装备有限公司

时间安排:

参评论文统计截止时间: 2008 年 8 月 30 日。

论文作者提交申请材料时间: 2008 年 7 月 1 日~9 月 30 日(论文被引的材料和论文所在项目或课题获奖的证明),请在 中国光学期刊网上提交。

审核时间: 2008年10月8日~10月30日。

编辑部将在 2008 年年底前对获奖作者进行公开表彰,并颁发证书和奖金。

希望作者踊跃参加。

详情请浏览:http://www.opticsjournal.net/Daheng.htm

咨询电话:021-69918427 胡 冰 E-mail: hubing@siom.ac.cn

光学期刊联合编辑部 2008-06-16